Pages

Wednesday, October 9, 2013

Mains Slave Switcher II

As a guide, a one-inch reed switch with 40 turns reliably switched on with the current flowing through a 150-watt lamp (approx. 625 mA) but larger reeds may require more turns. If the master appliance draws less current (which is unlikely with power tools) more turns will be required. The reed switch is used to switch on transistor T1 which in turn switches the relay RE1 and powers the slave appliance. Since reed switches have a low mechanical inertia, they have little difficulty in following the fluctuations of the magnetic field due to the alternating current in the coil and this means that they will switch on and off at 100 Hz.

Mains Slave Switcher II circuit schematic

C3 is therefore fitted to slow down the transistor response and keep the relay energised during the mains zero crossings when the current drawn by the appliance falls to zero and the reed switch opens. C1 drops the mains voltage to about 15 V (determined by zener diode D1) and this is rectified and smoothed by D2 and C2 to provide a d.c. supply for the circuit. The relay contacts should be rated to switch the intended appliance (vacuum cleaner) and the coil should have a minimum coil resistance of 400 R as the simple d.c. supply can only provide a limited current. C1 drops virtually the full mains voltage and should therefore be a n X2-class component with a voltage rating of at least 250V a.c.

Warning:
The circuit is by its nature connected directly to the mains supply. Great care should therefore be taken in its construction and the circuit should be enclosed in a plastic or earthed metal box with mains sockets fitted for the master and slave appliances.
Readmore...

Li Ion Battery Charger Circuit

The LP2951 regulator is manufactured by National Semiconductors. The choice of values is from an application note "Battery Charging", written by Chester Simpson. Diode D1 can be any diode from the 1N00x series, whichever is conveniently available. It functions as a blocking diode, to prevent a back flow of current from the battery into the LP2951 when the input voltage is disconnected. Charging current is about 100+mA, which is the internally-limited maximum current of the LP2951. For those wondering, this is compatible with just about any single-cell li-ion battery since li-ion can generally accept a charging current of up to about 1c (i.e. charging current in mA equivalent to their capacity in mAh, so a 1100mAh li-ion cell can be charged at up to 1100mA and so on).

Circuit diagram:

Li-Ion Battery Charger Circuit diagram Li-Ion Battery Charger Circuit diagram

A lower charging current just brings about a correspondingly longer charge time. IMHO 100mA is quite low, low enough that the circuit can be used for an overnight charger for many typical single-cell li-ion batteries. The resistors are deliberately kept at large orders of magnitude (tens/hundred Kohm and Mohm range) to keep the off-state current as low as possible, at about 2?A. Resistor tolerances should be kept at 1% for output voltage accuracy. The 50k pot allows for an output voltage range between 4.08V to 4.26V - thus allowing calibration as well as a choice between a charging voltage of 4.1V or 4.2V depending on the cell to be charged. The capacitors are for stability, especially C2 which prevents the output from ringing/oscillating.

Parts
IC1 = LP2951, voltage regulator
D1 = 1N4002, General purpose diode
R1 = 2M, 1%, metal-film
R2 = 806K, 1%, metal-film
P1 = 50K, potentiometer
C1 = 0.1uF, polyester
C2 = 2.2uF/16V, electrolytic
C3 = 330pF, ceramic

Source :www.extremecircuits.net

Readmore...

Tuesday, October 8, 2013

Laser Guided Door Opener

This automatic door opener can be made using readily available components. The electromagnetic relay at the output of this gadget can be used to control the DC/AC door-opener motor/solenoid of an electromechanical door opener assembly, with slight intervention in its electrical wiring. A laser diode (LED1) is used here as the light transmitter. Alternatively, you can use any available laser pointer. The combination of resistor R1 and diode D1 protects the laser diode from over-current flow. By varying multi-turn trimpot VR1, you can adjust the sensitivity. (Note that ambient light reflections may slightly degrade the performance of this unit.) Initially, when the laser beam is falling on photo-transistor T1, it conducts to reverse-bias transistor T3 and the input to the first gate (N1) of IC1 (CD4001) is low.

The high output at pin 3 of gate N1 forward biases the LED-driver transistor (T4) and the green standby LED (LED2) lights up continuously. The rest of the circuit remains in standby state. When someone interrupts the laser beam, photo-transistor T1 stops conducting and transistor T3 becomes forward-biased. This makes the output of gate N1 go low. Thus LED-driver transistor T4 becomes reverse-biased and LED2 stops glowing. At the same time, the low output of gate N1 makes the output of N2 high. Instantly, this high level at pin 4 of gate N2 triggers the monostable multivibrator built around the remaining two gates of IC1 (N3 and N4). Values of resistor R8 and capacitor C1 determine the time period of the monostable.

Laser-Guided Door Opener Circuit DiagramThe second monostable built around IC2 (CD4538) is enabled by the high-going pulse at its input pin 12 through the output of gate N4 of the first monostable when the laser beam is interrupted. As a result, relay RL1 energizes and the door-opener motor starts operating. LED3 glows to indicate that the door-opener motor is getting the supply. At the same time, piezo-buzzer PZ1 sounds an alert. Transistor T5, whose base is connected to Q output (pin 10) of IC2, is used for driving the relay. Transistor T6, whose base is connected to Q output of IC2, is used for driving the intermittent piezo-buzzer. ‘On’ time of relay RL1 can be adjusted by varying trimpot VR2. Resistor R9, variable resistor VR2 and capacitor C3 decide the time period of the second monostable and through it on time of RL1.

The circuit works off 12V DC power supply. Assemble it on a general-purpose PCB. After construction, mount the laser diode and the photo-transistor on opposite sides of the door-frame and align them such that the light beam from the laser diode falls on the photo-transistor directly. The motor connected to the pole of relay contacts is the one used in electromechanical door-opener assembly. If you want to use a DC motor, replace mains AC connection with a DC power supply.
Readmore...

SOFT START MECHANISM FOR L200 VOLTAGE REGULATOR ELECTRONIC DIAGRAM

SOFT START MECHANISM FOR L200 VOLTAGE REGULATOR ELECTRONIC DIAGRAM

Ic (constant current) is charge capacitor C, where Ic = Vsc/R.

The output reaches its nominal value after the time ton. Vo-Vsc=(Ic.ton)/C.

ton=C.[(Vo-0.45)/0.45].R = CVoR/0.45.

Vo follows the voltage in pin 2 at less than 0.45 volt. It is because voltage of more than 0.45 V can’t be produced between pin 2 and pin 5.
Readmore...

Monday, October 7, 2013

Condenser Mic Audio Amplifier

The compact, low-cost condenser mic audio amplifier described here provides good-quality audio of 0.5 watts at 4.5 volts. It can be used as part of intercoms, walkie-talkies, low-power transmitters, and packet radio receivers. Transistors T1 and T2 form the mic preamplifier. Resistor R1 provides the necessary bias for the condenser mic while preset VR1 functions as gain control for varying its gain. In order to increase the audio power, the low-level audio output from the preamplifier stage is coupled via coupling capacitor C7 to the audio power amplifier built around BEL1895 IC.

Condenser Mic Audio Amplifier circuit schematic

BEL1895 is a monolithic audio power amplifier IC designed specifically for sensitive AM radio applications that delivers 1 watt into 4 ohms at 6V power supply voltage. It exhibits low distortion and noise and operates over 3V-9V supply voltage, which makes it ideal for battery operation. A turn-on pop reduction circuit prevents thud when the power supply is switched on. Coupling capacitor C7 determines low-frequency response of the amplifier. Capacitor C9 acts as the ripple-rejection filter.

Capacitor C13 couples the output available at pin 1 to the loudspeaker. R15-C13 combination acts as the damping circuit for output oscillations. Capacitor C12 provides the boot strapping function. This circuit is suitable for low-power HAM radio transmitters to supply the necessary audio power for modulation. With simple modifications it can also be used in intercom circuits.
Readmore...

Simple MD Catridge Preamplifier

Phonographs are gradually becoming a rarity. Most of them have had to yield to more advanced systems, such as CD players and recorders or (portable) MiniDisc player/recorders. This trend is recognized by manufacturers of audio installations, which means that the traditional phono input is missing on increasingly more systems. Hi-fi enthusiasts who want make digital versions of their existing collections of phonograph records on a CD or MD, discover that it is no longer possible to connect a phonograph to the system.

Simple MD Catridge Preamplifier circuit diagramHowever, with a limited amount of circuitry, it is possible to adapt the line input of a modern amplifier or recorder so that it can handle the low-level signals generated by the magnetodynamic cartridge of a phonograph. Of course, the circuit has to provide the well-known RIAA correction that must be used with these cartridges. The preamplifier shown here performs the job using only one opamp, four resistors and four capacitors. For a stereo version, you will naturally need two of everything. Any stabilized power supply that can deliver ±15V can be used as a power source.
Readmore...

Sunday, October 6, 2013

0 5 WATT MINI AMPLIFIER TDA1015T ELECTRONIC DIAGRAM

0,5 WATT MINI AMPLIFIER TDA1015T ELECTRONIC DIAGRAM

Chances are youll want this amplifier portable. Batteries do the trick fine, but you wont get much power out of a couple of 1.5V cells. Unfortunately the size of a decent amount of battery power will mean that the overall size of this amp will be much bigger and for that there are more benefits to be had using a device like the TDA7052 or TDA2822 for stereo.

Quick ref data of TDA1015T Chip

  •     Supply voltage range: 3,6 to 12 V
  •     Peak output current: 1 A
  •     Output power: 0,5 W
  •     Voltage gain power amplifier: 29 dB
  •     Voltage gain preamplifier: 23 dB
  •     Total quiescent current: 22 mA
  •     Operating ambient temperature range: -25 to +150 °C
  •     Storage temperature range: -55 to + 150 °C
Readmore...

Simple Battery Charger Circuit Charges Upto 12 NiCD Cells

This handy circuit can be used to charge from one to 12 NiCd cells from a car battery. Up to six cells can be charged with switch S1 in the "normal" position. The LM317regulator operates as a simple current source, providing about 530mA when R1 = 2.35O (two 4.7O resistors in parallel). For more than six cells, S1 is set to the "boost" position. This applies powers to IC1, a 10W (or 20W) audio power amplifier. Positive feedback from its output (pin 4) to non-inverting input (pin 1) causes IC1 to act as a square wave oscillator. This square wave signal is coupled to the junction of Schottky diodes D1 and D2 via a 330µF capacitor, forming a conventional charge-pump voltage doubler. Over 20V (unloaded) appears at the input to REG1 - enough to charge a maximum of 12 cells!

Simple circuit charges up to 12 NiCds circuit schematic
Readmore...

Saturday, October 5, 2013

Infrared Remote Receiver Has Four Outputs

This circuit enables any infrared (IR) remote control to control the outputs of a 4017 decade counter. Its quite simple really and uses a 3-terminal IR receiver (IRD1) to pick up infrared signals from the transmitter. IRD1s output is then coupled to NPN transistor Q1 via a 220nF capacitor. Transistor Q1 functions as a common-emitter amplifier with a gain of about 20, as set by the ratio of its 10kO collector resistor to its 470O emitter resistor. Q1 in turn triggers IC1, a 4047 monostable which in turn clocks a 4017 decade counter (IC2).

Infrared remote receiver has four outputs circuit schematic

Basically, IC1 provides a clock pulse to IC2 each time a remote control button is pressed. If you dont wish to use all 10 outputs from IC2, simply connect the first unused output to pin 15 (MR). In this case, only the first four outputs (O0-O3) of the counter are used and so the O4 output is connected to pin 15 to reset the counter on the fifth button press. Power for the circuit is derived from the mains via a transformer and bridge rectifier which produces about 15-27V DC. This is then fed to 3-terminal regulators REG1 & REG2 to derive +12V and +5V supply rails.
Readmore...

Connection Tester


A low resistance ( 0.25 - 4 ohm) continuity tester for checking soldered joints and connections.


This simple circuit uses a 741 op-amp in differential mode as a continuity tester. The voltage difference between the non-inverting and inverting inputs is amplified by the full open loop gain of the op-amp. Ignore the 470k and the 10k control for the moment, and look at the input of the op-amp. If the resistors were perfectly matched, then the voltage difference would be zero and output zero. However the use of the 470k and 10k control allows a small potential difference to be applied across the op-amp inputs and upset the balance of the circuit. This is amplified causing the op-amp output to swing to full supply voltage and light the LEDs.

Connection Tester Circuit DiagramSetting Up and Testing:

The probes should first be connected to a resistor of value between 0.22 ohm and 4ohm. The control is adjusted until the LEDs just light with the resistance across the probes. The resistor should then be removed and probes short circuited, the LEDs should go out. As the low resistance value is extremely low, it is important that the probes, (whether crocodile clips or needles etc) be kept clean, otherwise dirt can increase contact resistance and cause the circuit to mis-operate. The circuit should also work with a MOSFET type op-amp such as CA3130, CA3140, and JFET types, e.g. LF351. If the lEDs will not extinguish then a 10k preset should be wired across the offset null terminals, pins 1 and 5, the wiper of the control being connected to the negative battery terminal.
Readmore...

Friday, October 4, 2013

Lead Acid Battery Charger Circuit 2

The above pictured schematic diagram is just a standard constant current model with a added current limiter, consisting of Q1, R1, and R4. The moment too much current is flowing biases Q1 and drops the output voltage. The output voltage is: 1.2 x (P1+R2+R3)/R3 volt. Current limiting kicks in when the current is about 0.6/R1 amp. For a 6-volt battery which requires fast-charging, the charge voltage is 3 x 2.45 = 7.35 V. (3 cells at 2.45v per cell).

Schematic circuit

So the total value for R2 + P1 is then about 585 ohm. For a 12 V battery the value for R2 + P1 is then about 1290 ohm. For this power supply to work efficiently, the input voltage has to be a minimum of 3V higher than the output voltage. P1 is a standard trimmer potentiometer of sufficient watt for your application. The LM317 must be cooled on a sufficient (large) coolrib. Q1 (BC140) can be replaced with a NTE128 or the older ECG128 (same company). Except as a charger, this circuit can also be used as a regular power supply.

 layoutw

 

pcb1Parts List:

R1 = 0.56 Ohm, 5W, WW
R2 = 470 Ohm C2 = 220nF
R3 = 120 Ohm
R4 = 100 Ohm
C1 = 1000uF/63V
Q1 = BC140
Q2 = LM317, Adj. Volt Reg.
C3 = 220nF (On large coolrib!)
P1 = 220 Ohm

Source : www.extremecircuits.net

Readmore...

Three State Continuity Tester

The continuity tester can distinguish between high-, medium-, and low-resistance connections. When there is a conductance between the inputs, which are linked to small probes, a current flows from the +9 V line to earth via R1 and R2. The consequent potential difference, p.d., across R2 is used to determine the transfer resistance. Operational amplifier IC1c amplifies the p.d. across R2 to a degree that is set with P1. A window comparator, IC1a and IC1b, likens the output of IC1c to the two levels set with potential divider R4–R6. Depending on the state of the outputs of the two comparators, three light-emitting diodes (LEDs) are driven via the gates and inverters contained in IC3 and IC2 respectively in such a way that they indicate the transfer resistance in three categories.

Three-State Continuity Tester Circuit DiagramWhen the resistance is high, green diode D3 lights; when it is of medium value, yellow diode D2 lights, and when it is low, red diode D1 lights. The levels at which the diodes light is set with P1, but note that in any case the minimum value depends on the p.d. across R2. It is possible to reduce the value of the p.d. to enable lower transfer resistances to be detected, but this would mean an increase in the test current through R2. With values as specified, the circuit in its quiescent state draws a current of about 17 mA, but in operation each LED adds about 10 mA to this. The LM324 (IC1) may be operated from a single supply line: R1 prevents the voltage at the input from reaching the level of the supply line (which is not permissible). The supply voltage may be 5–18 V. The LEDs are driven directly by the inverters in the 4049 (IC2), which can switch currents of up to 20mA to earth.
Readmore...

Thursday, October 3, 2013

Power Outage Warning Circuit

5 to 15V supply - LED indicator Adjustable time detection

A circuit capable of detecting even a very short power outage, can be useful, mainly if embedded into existing appliances like mains powered counters, timers, clocks and the like.

At switch-on of the appliance, the LED illuminates, but pressing on P1 it goes off and remains in this state until a power outage occurs. When power supply is restored, the LED illuminates steadily until you press P1 again.

The circuit sensitivity can be adjusted by Trimmer R5. This means that, under the control of R5, the LED may not light if the mains is missing for a short interval in the 1 to 15 seconds range.

Circuit Diagram :

PowerOutage Circuit diagram Power Outage Warning Circuit Diagram

Circuit Operation :

IC1A and IC1B NAND gates are wired as a set-reset flip-flop. R1 and C1 provide auto-set of the flip-flop when the circuit is powered, so pin 3 of IC1A goes high and pin 4 of IC1B goes low. This allows the outputs of IC1C and IC1D, wired in parallel as inverters, to go high driving the LED D1 on. The flip-flop is reset by pushing on P1.

As the circuit is intended to be powered from the same appliance that is monitoring, the supply is derived from the ac voltage available at the existing transformer secondary winding (see the upper box of the circuit diagram enclosed in the dashed blue line). The circuit will work with ac voltage values in the 5 - 15V range.

A simple diode-capacitor cell (D2-C2) is sufficient to provide the necessary dc voltage. A rather low value was chosen for C2 in order to allow the circuit to detect very short periods of power failure.

The resistance value of R4 + R5 controls the discharge time of C2: with R5 set to the minimum value, the circuit will signal power outages from 1 sec. onwards. If R5 is set to the maximum, the circuit will signal power outages from about 15 sec. onwards.

Notes :

  • R3 value should be reduced accordingly if the transformers secondary ac voltage is below 10V
  • The circuit can be constructed as an independent unit by simply adding a small transformer with a primary winding suited to the local mains voltage and a secondary winding rated from 5 to 15V AC.

Source :www.redcircuits.com

Readmore...

Infra red Receiver

This very simple infra-red receiver is intended to form an infra-red remote control system with the simple infra-red transmitter described in this site. The system does not use any kind of coding or decoding, but the carrier of the transmitter is modified in a simple manner to provide a constant switching signal. Since the receive module, IC1, switches from low to high (in the quiescent state, the output is high) when the carrier is received for more than 200 milliseconds, the carrier is transmitted in the form of short pulse trains. This results in a pulse at the output of the receiver that has a duty cycle which is just larger than 12.5%. The carrier frequency used in the system is 36 kHz, so that the output frequency of IC1 is 281.25 Hz.

Infra-Red Receiver Circuit DiagramThis signal is rectified with a time constant that is long enough to ensure good smoothing, so that darlington T1 is open for as long as the received signal lasts. A drawback of this simple system is that it may pick up signals transmitted by another infra-red (RC5) controller. In this case, only the envelopes of the pulse trains would appear at the output of T1. This effect may, of course, be used intentionally. For instance, the receiver may be used to drive an SLB0587 dimmer. Practice has shown that the setting of the SLB0587 is not affected by the RC5 pulses. The receiver draws a current of about 0.5mA.
Readmore...

Wednesday, October 2, 2013

Ultra Low Drop Linear Voltage Regulator

This circuit is a Mosfet-based linear voltage regulator with a voltage drop of as low as 60mV at 1A. The circuit uses a 15V-0-15V transformer and employs an IRF540 N-channel Mosfet (Q1) to deliver the regulated 12V output. The gate drive voltage required for the Mosfet is generated using a voltage doubler circuit consisting of diodes D1 & D2 and capacitors C1 & C2. To turn the Mosfet fully on, the gate terminal should be around 10V above the source terminal which is connected to the DC output. The voltage doubler feeds this voltage to the gate via resistor R3. IC2, a TL431 adjustable shunt regulator, is used as the error amplifier. It dynamically adjusts the gate voltage to maintain the regulation at the output. With an adequate heatsink for the Mosfet, the circuit can provide up to 3A output at slightly elevated minimum voltage drop.

Ultra low drop linear voltage regulator circuit schematic

Trimpot VR1 is used for fine adjustment of the output voltage. The RC network consisting of R5 and C6 provides error-amplifier compensation. The circuit is provided with short-circuit crowbar protection to guard against an accidental short at the output. This crowbar protection works as follows: under normal working conditions, the voltage across capacitor C5 will be 6.3V and diode D5 will be reverse-biased by the output voltage of 12V. However, during output short-circuit conditions, the output will momentarily drop, causing D5 to conduct. This triggers the MOC3021 Triac optocoupler (IC1) which in turn pulls the gate voltage to ground. This limits the output current. The circuit will remain latched in this state and the input voltage has to be switched off to reset the circuit.
Readmore...

220V AC Powered Blinking LED

I needed a pulsating light for a certain signaling. Voltage was 230V. So I decided to make a simple circuit, consisted of a LED diode, two capacitors, two resistors, a diac and a diode. Activity of the circuit is extraordinarily simple. The capacitor charges by the diode and the resistor. When the voltage on the capacitor achieves 30V the diac "releases" the electrical tension and the capacitor empties thorough the diac, LED blinks. Time base is dependent from the capacitor and the resistor, which is in series with diode 1N4007. Capacitor must be at least for 40V.

220V AC Powered Blinking LED circuit project220V AC Powered Blinking LED circuit diagram
Readmore...

Tuesday, October 1, 2013

Automatic Mains Disconnect

Downloading and CD-burning programs usually provide the option of automatically shutting down the PC on completion of their tasks. However, this energy-saving feature is of little benefit if even after the PC has been switched off, all of the peripheral equipment remains connected to the mains and happily consumes watt-hours. The circuit shown here provides a solution to this dilemma. It is connected ahead of the power strip and connects or disconnects mains power for all of the equipment via a power relay. A connection to a 12-V PC fan (which may be the processor fan or the fan for the chipset, if the latter is present) indicates whether the PC is switched on.

If you are certain that the 12-V power supply voltage is switched off when the PC is in the sleep mode, you can use this connection instead. To switch everything on, press the Start button to cause the power relay to be energized and provide mains voltage to all of the equipment. If the PC has an ATX board, its Power switch must be pressed at the same time to cause the PC to start up. When the PC fan starts to run, low-power relay Re1 engages and takes over the function of the Start switch, which can then be released. This state is stable. If the PC switches to the sleep state, the 12-V voltage drops out.

Automatic Mains Disconnect Circuit DiagramThe electrolytic capacitor ensures that Re1 remains engaged for a short time, after which it drops out, followed by the power relay. D1 prevents the electrolytic capacitor from discharging through the connected fan, and D2 is the usual freewheeling diode. The system is disconnected from both mains leads and is thus completely de-energized. Be sure to select components that are suitable for their tasks. Naturally, the contacts of Re2 should be rated to handle the total current drawn by all of the peripheral equipment and the PC, and the relay coil must be suitable for use with mains voltage (6 mm minimum separation between coil and contacts).

A low-power 12-V relay that can switch mains voltage is adequate for Re2. The Start pushbutton switch is connected to the mains voltage, so a 230-V type must be used. The circuit board layout and enclosure must also be designed in accordance with safety regulations. A separation of at least 6 mm must be maintained between all components carrying mains voltage and the low-voltage components, and the enclosure must be completely free of risk of electrical shock. With a bit of skill, the circuit can be fitted into a power bar with a built-in switch, if the switch is replaced by a pushbutton switch having the same mounting dimensions.

Note:
  • The circuit is not suitable for use with deskjet printers that can only be switched on and off by a front panel button.
Readmore...

VGA to BNC Adapter Converter Citcuit

There are monitors which only have three BNC inputs and which use composite synchronization (‘sync on green’). This circuit has been designed with these types of monitor in mind. As can be seen, the circuit has been kept very simple, but it still gives a reasonable performance. The principle of operation is very straightforward. The RGB signals from the VGA connector are fed to three BNC connectors via AC-coupling capacitors. These have been added to stop any direct current from entering the VGA card. A pull-up resistor on the green output provides a DC offset, while a transistor (a BS170 MOSFET) can switch this output to ground. It is possible to get synchronisation problems when the display is extremely bright, with a maximum green component.

In this case the value of R2 should be reduced a little, but this has the side effect that the brightness noticeably decreases and the load on the graphics card increases. To keep the colour balance the same, the resistors for the other two colors (R1 en R3) have to be changed to the same value as R2. An EXOR gate from IC1 (74HC86) combines the separate V-sync and H-sync signals into a composite sync signal. Since the sync in DOS-modes is often inverted compared to the modes commonly used by Windows, the output of IC1a is inverted by IC1b. JP1 can then by used to select the correct operating mode. This jumper can be replaced by a small two-way switch, if required.

 

VGA-to-BNC Adapter_165 VGA-to-BNC Adapter diagram_165

   parts VGA-to-BNC Adapter_165pcb VGA-to-BNC Adapter_165

This switch should be mounted directly onto the PCB, as any connecting wires will cause a lot of interference. The PCB has been kept as compact as possible, so the circuit can be mounted in a small metal (earthed!) enclosure. With a monitor connected the current consumption will be in the region of 30 mA. A 78L05 voltage regulator provides a stable 5 V, making it possible to use any type of mains adapter, as long as it supplies at least 9 V. Diode D2 provides protection against a reverse polarity.

LED D1 indicates when the supply is present. The circuit should be powered up before connecting it to an active VGA output, as otherwise the sync signals will feed the circuit via the internal protection diodes of IC1, which can be noticed by a dimly lit LED. This is something best avoided.

Resistors:
R1,R2,R3 = 470Ω
R4 = 100Ω
R5 = 3kΩ3
Capacitors:
C1,C3,C5 = 47µF 25V radial
C2,C4,C6,C7,C10 = 100nF ceramic
C8 = 4µF7 63V radial
C9 = 100µF 25V radial
Semiconductors:
D1 = LED, high-efficiency
D2 = 1N4002
T1 = BS170
IC1 = 74HC86
IC2 = 78L05
Miscellaneous:
JP1 = 3-way pinheader with jumper
K1 = 15-way VGA socket (female), PCB mount (angled pins)
K2,K3,K4 = BNC socket (female), PCB mount, 75Ω

Source : www.extremecircuits.net

Readmore...