Pages

Showing posts with label circuit. Show all posts
Showing posts with label circuit. Show all posts

Friday, September 5, 2014

Electronic Security Door Key Circuit Diagram

A different Electronic Security Door Key Circuit Diagram of electronic lock very simple, one and does not need a lot of materials in order to it is manufactured. The right keys of code should be stepped with the right line, so that is activated the optocupler IC2. If from error is stepped switch that does not belong in the combination, then the lock is trapped. In order to we restore the regular operation of lock, it should we press switches S1 or S12. 

Read : Heat Detector Alarm using UM3561 

 Electronic Security Door Key Circuit Diagram

Electronic Security Door Key Circuit Diagram


Switch S1 makes Reset of lock externally and the S12 internally, the door. The Code the circuit as he is connected it is 147 and it can change, very easily, changing the connections in the switches of keyboard. The optocupler IC2, can drive any exterior circuit as Relay etc, ensuring simultaneously electric isolation the two circuits. The circuit can be also supplied from a battery 9V.

Read : Radio Wave Alarm

Part List

    R1-7-9=1Kohm
    R2-3-4-5=100Kohm
    R6 =10Kohm
    R9 =47Kohm
    IC1 = 4066
    IC2 =4N25
    Q1-2=BC550
    S1...11=Push button sw or keyboard
    S12=Push button normal closed
    All resistors is 1/4W 5%
Readmore...

Wednesday, August 13, 2014

Voltage Converter 0 5v to 6v Circuit Diagram

This is a Simple Voltage Converter 0.5v to 6v Circuit Diagram. Conventional silicon transistors just cant operate at voltages less than about 0.7v. Old germanium transistors could be used, but those are hard to find these days and most are rather large in size. Some new n-channel MOSFET devices with very low gate-source threshold voltage can operate at quite low voltages. Ive been experimenting with various devices and came up with one electronic circuit (shown below), which demonstrates how to boost the low voltage from a single solar cell to a higher voltage. 

Voltage Converter 0.5v to 6v Circuit Diagram

Simple Voltage Converter 0.5v to 6v Circuit Diagram


The key component in the circuit below is a cheap single logic device from Texas Instruments. It turns out that TIs 74AUC family of parts can work down to about 0.45 volts. I tried one of their single schmitt trigger parts and found I was able to make on oscillator function nicely at 0.5 volts. I then used a charge pump technique and a cheap NPN transistor to form a low power flyback converter. 

This hobby circuit can produce about 6 volts at the output from a 0.5v input. The idea is to use this boost circuit to generate the higher starting voltage needed by a much more powerful DC to DC converter. Once started, part of the converters output could then be feed back to the input, to sustain converter operation. This is known as a "bootstrap" technique. In the future, I hope to post a circuit which can supply several watts of power from a 0.5v input voltage. This would be ideal for charging a battery using power from a single large solar cell or several smaller cells wired in parallel.



Drown By : Dave Jhonson
Readmore...

Saturday, January 11, 2014

Dual Regulated Power Supply Circuit Diagram

In this circuit, the 7815 regulatates the positive supply, and the 7915 regulates the negative supply. The transformer should have a primary rating of 240/220 volts for europe, or 120 volts for North America. The centre tapped secondary coil should be rated about 18 volts at 1 amp or higher, allowing for losses in the regulator. An application for this type of circuit would be for a small regulated bench power supply. 

 Dual Regulated Power Supply Circuit Diagram

Dual Regulated Power Supply Circuit Diagram

Readmore...

Friday, January 10, 2014

Low Power Voltage Reference Circuit Diagram

The Low Power Voltage Reference Circuit Diagram described below, is a special implementation of current source LM334. Characterized by a very small temperature coefficient metatholio output voltage and consumes only 10uA room temperature. This current fluctuates by a few uA, when the ambient temperature varies significantly. The positive rate of temperature change LM334 offset by the negative of the contact base emitter transistors has a direct thermal coupling with the integrated. 

To achieve the lowest possible temperature coefficient, it is necessary to adjust the output voltage of 1,253 V source to the arrangement easily done through R1. From the moment you get the desired output voltage, you are advised to stuck P1 and after the count value, replace it with a constant resistance. The best indeed is to replace P1 with the R1, so you have fewer parts. Prefer metal film resistors and tolerance of 1% E96 series. Having as a given that the output voltage obtained from the pin configuration LM334, is expected to show a negative resistance value 3.8 KO. 

The resistance A3 ensures that the output impedance will be equal to 400 W. Under these conditions, the current that can provide the source to the load to be connected to out of retained less than 5 Ma stability of the voltage source is more than satisfactory. By varying the input voltage from 5 V to 30 V, the change in output was only 0.6 mem (from 1.2530 to 1,2536 V). The change in the thermal coefficient is maintained at values ??less than 50 ppm / C, and if you worry a bit more to the setting of the circuit, you will see that quite easily reaches 5 ppm / C. The requirements of the original circuit current was only 9.8 mA at a temperature of 22C.

Low Power Voltage Reference Circuit Diagram

Low Power Voltage Reference Circuit Diagram

Readmore...

Thursday, January 9, 2014

Simple 15V And 5V Car Battery Supply Circuit Diagram

This is a Simple 15V And 5V Car Battery Supply Circuit Diagram. In this circuit use IC1 is a switching regulator that generates a 45-kHz signal that drives the gate of MOSFET Ql. Dl, D2, and D3 are Schottky diodes. The 5-V output is sensed as a reference; feedback to the chip turns off the gate signal to Ql if the voltage rises above 5 V. 

Tl has Trifilar windings that assume about 2% regulation for a 10-to 100-mA load change on the ± 15-V supplies. R1/D4 provide over-voltage protection. Tl has a primary inductance of about 21 . Core size should allow 4-A peak currents. The turn ratios are IIV2 turns each for the 15-V supplies, ll1/2 turns for the primary, and four turns for the 5-V secondary. The efficiency is about 75%.

Simple 15V And 5V Car Battery Supply Circuit Diagram

Simple 15V And 5V Car Battery Supply Circuit Diagram

Readmore...

Friday, December 27, 2013

5 LED VU meter circuit diagram using KA2284

This is a simple circuit diagram of 5-LED audio VU meter using IC KA2284/KA2285. The KA2284, KA2285 are monolithic integrated circuit. It is a logarithmic display driver IC. And it is Bar type display driver using 5-Dot LED. The KA2284/KA2285 has a wide range supply voltage capacity of 3.5V-16V, but we recommend to use about a 12VDC power supply.

Circuit Diagram:


KA2284-led vu meter
Fig: 5-LED Dot/Bar (VU meter) circuit diagram

Usability of this circuit:

  • AC signal Meter or DC Level meter.
  • Audio VU(Volume Unit) meter in amplifier or such kind of device.
Here IC AN6884 is also can be used instead of KA2284,KA2285. These all are almost same.
Further reading: DOT vs BAR
Readmore...

Monday, December 23, 2013

3 Rail Power supply Circuit Diagram

This 3- Rail Power supply Circuit Diagram generates three supply voltages using a minimum of components. Diodes D2 and D3 perform full-wave rectification, alternately charging capacitor C2 on both halves of the ac cycle. On the other hand, diode D1 with capacitor C1, and diode D4 with capacitor C3 each perform half-wave rectification. 

The full-and half-wave rectification arrangement is satisfactory for modest supply currents drawn from -5 and +12-V regulators IC3 and IC2. You can use this circuit as an auxiliary supply in an up-based instrument, for example, and avoid the less attractive alternatives of buying a custom-wound transformer, building a more complex supply, or using a secondary winding, say 18 Vac, and wasting power in the 5-V regulators.

3- Rail Power supply Circuit Diagram

3- Rail Power supply Circuit Diagram

Readmore...

Sunday, December 22, 2013

Easy Dc To Dc Converter Circuit Diagram

This Easy Dc To Dc Converter Circuit Diagram uses a Linear Technology LT1073 in a -24-V converter. The supply can be two AA cells (3 V) or 5 V. The circuit can deliver 7 mA.


Dc To Dc Converter Circuit Diagram

Easy Dc To Dc Converter Circuit Diagram

Readmore...

1000 watt power inverter circuit diagram

This 1000 watt power inverter circuit diagram based on MOSFET RF50N06.If you want more power then  add additional  MOSFET paralleled at RF50N06.This MOSFETS are  60 Volts and 50 Amps as rated.  It is necessary to connect  a  FUSE with the power line and always a LOAD have to connected while power is being  applied . The output power of this inverter is up-to 1k watt , it depends on output power transformer . You can use your custom transformer with experimenting for best result.

Circuit Diagram | 1000 watt power inverter


1000w inverter circuit
Fig:Schematic diagram of 1000 watt power inverter

How to parallel MOSFETs | 1000 watt power inverter


parallel MOSFETs


Source: http://www3.telus.net/chemelec/Projects/Inverter/Mosfet-Inverter.htm
Readmore...

Friday, December 20, 2013

Warning Light and Marker Light Circuit Diagram

This is a Warning Light and Marker Light Circuit Diagram. A flashing light of high brightness and short duty cycle is often desired to provide maximum visibility and battery life. This necessitates using an output transistor, which can supply the cold filament surge current of the lamp while maintaining a low saturation voltage. The oscillation period and flash duration are determined in the feedback loop, while the use of a photo transistor sensor minimizes sensitivity variations. 




Warning Light and Marker Light Circuit Diagram

Warning Light and Marker Light Circuit Diagram
 
Readmore...

Monday, December 16, 2013

Simple Battery charger Circuit Diagram

This is a simple Battery charger circuit diagram. A diac is used in the gate circuit to provide work for the signal being applied to the gate. R1 a threshold level for firing the triac. C3 and R4 is selected to limit the maximum charging cur-provide a transient suppression network Rl, rent at full Totation of R2. R2, R3, Cl, and C2 provide a phase-shift net.


Simple Battery charger Circuit Diagram




Simple Battery charger Circuit Diagram
Readmore...

Wednesday, October 9, 2013

Li Ion Battery Charger Circuit

The LP2951 regulator is manufactured by National Semiconductors. The choice of values is from an application note "Battery Charging", written by Chester Simpson. Diode D1 can be any diode from the 1N00x series, whichever is conveniently available. It functions as a blocking diode, to prevent a back flow of current from the battery into the LP2951 when the input voltage is disconnected. Charging current is about 100+mA, which is the internally-limited maximum current of the LP2951. For those wondering, this is compatible with just about any single-cell li-ion battery since li-ion can generally accept a charging current of up to about 1c (i.e. charging current in mA equivalent to their capacity in mAh, so a 1100mAh li-ion cell can be charged at up to 1100mA and so on).

Circuit diagram:

Li-Ion Battery Charger Circuit diagram Li-Ion Battery Charger Circuit diagram

A lower charging current just brings about a correspondingly longer charge time. IMHO 100mA is quite low, low enough that the circuit can be used for an overnight charger for many typical single-cell li-ion batteries. The resistors are deliberately kept at large orders of magnitude (tens/hundred Kohm and Mohm range) to keep the off-state current as low as possible, at about 2?A. Resistor tolerances should be kept at 1% for output voltage accuracy. The 50k pot allows for an output voltage range between 4.08V to 4.26V - thus allowing calibration as well as a choice between a charging voltage of 4.1V or 4.2V depending on the cell to be charged. The capacitors are for stability, especially C2 which prevents the output from ringing/oscillating.

Parts
IC1 = LP2951, voltage regulator
D1 = 1N4002, General purpose diode
R1 = 2M, 1%, metal-film
R2 = 806K, 1%, metal-film
P1 = 50K, potentiometer
C1 = 0.1uF, polyester
C2 = 2.2uF/16V, electrolytic
C3 = 330pF, ceramic

Source :www.extremecircuits.net

Readmore...

Sunday, October 6, 2013

Simple Battery Charger Circuit Charges Upto 12 NiCD Cells

This handy circuit can be used to charge from one to 12 NiCd cells from a car battery. Up to six cells can be charged with switch S1 in the "normal" position. The LM317regulator operates as a simple current source, providing about 530mA when R1 = 2.35O (two 4.7O resistors in parallel). For more than six cells, S1 is set to the "boost" position. This applies powers to IC1, a 10W (or 20W) audio power amplifier. Positive feedback from its output (pin 4) to non-inverting input (pin 1) causes IC1 to act as a square wave oscillator. This square wave signal is coupled to the junction of Schottky diodes D1 and D2 via a 330µF capacitor, forming a conventional charge-pump voltage doubler. Over 20V (unloaded) appears at the input to REG1 - enough to charge a maximum of 12 cells!

Simple circuit charges up to 12 NiCds circuit schematic
Readmore...

Friday, October 4, 2013

Lead Acid Battery Charger Circuit 2

The above pictured schematic diagram is just a standard constant current model with a added current limiter, consisting of Q1, R1, and R4. The moment too much current is flowing biases Q1 and drops the output voltage. The output voltage is: 1.2 x (P1+R2+R3)/R3 volt. Current limiting kicks in when the current is about 0.6/R1 amp. For a 6-volt battery which requires fast-charging, the charge voltage is 3 x 2.45 = 7.35 V. (3 cells at 2.45v per cell).

Schematic circuit

So the total value for R2 + P1 is then about 585 ohm. For a 12 V battery the value for R2 + P1 is then about 1290 ohm. For this power supply to work efficiently, the input voltage has to be a minimum of 3V higher than the output voltage. P1 is a standard trimmer potentiometer of sufficient watt for your application. The LM317 must be cooled on a sufficient (large) coolrib. Q1 (BC140) can be replaced with a NTE128 or the older ECG128 (same company). Except as a charger, this circuit can also be used as a regular power supply.

 layoutw

 

pcb1Parts List:

R1 = 0.56 Ohm, 5W, WW
R2 = 470 Ohm C2 = 220nF
R3 = 120 Ohm
R4 = 100 Ohm
C1 = 1000uF/63V
Q1 = BC140
Q2 = LM317, Adj. Volt Reg.
C3 = 220nF (On large coolrib!)
P1 = 220 Ohm

Source : www.extremecircuits.net

Readmore...

Thursday, October 3, 2013

Power Outage Warning Circuit

5 to 15V supply - LED indicator Adjustable time detection

A circuit capable of detecting even a very short power outage, can be useful, mainly if embedded into existing appliances like mains powered counters, timers, clocks and the like.

At switch-on of the appliance, the LED illuminates, but pressing on P1 it goes off and remains in this state until a power outage occurs. When power supply is restored, the LED illuminates steadily until you press P1 again.

The circuit sensitivity can be adjusted by Trimmer R5. This means that, under the control of R5, the LED may not light if the mains is missing for a short interval in the 1 to 15 seconds range.

Circuit Diagram :

PowerOutage Circuit diagram Power Outage Warning Circuit Diagram

Circuit Operation :

IC1A and IC1B NAND gates are wired as a set-reset flip-flop. R1 and C1 provide auto-set of the flip-flop when the circuit is powered, so pin 3 of IC1A goes high and pin 4 of IC1B goes low. This allows the outputs of IC1C and IC1D, wired in parallel as inverters, to go high driving the LED D1 on. The flip-flop is reset by pushing on P1.

As the circuit is intended to be powered from the same appliance that is monitoring, the supply is derived from the ac voltage available at the existing transformer secondary winding (see the upper box of the circuit diagram enclosed in the dashed blue line). The circuit will work with ac voltage values in the 5 - 15V range.

A simple diode-capacitor cell (D2-C2) is sufficient to provide the necessary dc voltage. A rather low value was chosen for C2 in order to allow the circuit to detect very short periods of power failure.

The resistance value of R4 + R5 controls the discharge time of C2: with R5 set to the minimum value, the circuit will signal power outages from 1 sec. onwards. If R5 is set to the maximum, the circuit will signal power outages from about 15 sec. onwards.

Notes :

  • R3 value should be reduced accordingly if the transformers secondary ac voltage is below 10V
  • The circuit can be constructed as an independent unit by simply adding a small transformer with a primary winding suited to the local mains voltage and a secondary winding rated from 5 to 15V AC.

Source :www.redcircuits.com

Readmore...

Saturday, September 28, 2013

One second Audible Clock Circuit

Accurate, finger-operated portable unit, 3 - 12V Battery supply
This accurate one-pulse-per-second clock is made with a few common parts and driven from a 50 or 60 Hertz mains supply but with no direct connection to it. A beep or metronome-like click and/or a visible flash, will beat the one-second time and can be useful in many applications in which some sort of time-delay counting in seconds is desirable. The circuit is formed by a CMos 4024 counter/divider chip and 3 diodes, arranged to divide the frequency of the input signal at pin #1 by 50 (or 60, see Notes). The input impedance at pin #1 is very hight, so simply touching the pin (or a short track or piece of wire connected to it) is usually enough to provide the necessary input signal. Another way to provide an input signal consists in a piece of wire wrapped several times around any convenient mains cable or transformer. No other connection is necessary.
Circuit diagram :
One second Audible Clock Circuit diagram
Parts:

R1 = 10K
R2 = 47.K
R3 = 100R
C1 = 1nF-63V
C2 = 10µF-25V
C3 = 100nF-63V
D1 = 1N4148
D2 = 1N4148
D3 = 1N4148
D4 = LED-(Optional, any shape and color, see Notes)
D5 = 1N4148-75V 150mA Diode (Optional, see Notes)
Q1 = BC337-45V 800mA NPN Transistor
IC1 = 4024-7 stage ripple counter IC
BZ1 = Piezo sounder (incorporating 3KHz oscillator)
SPKR = 8 Ohm, 40 - 50mm diameter Loudspeaker (Optional, see Notes)
SW1 = SPST Toggle or Slide Switch (Optional, see Notes)
B1 = 3 to 12V Battery (See Notes)
Notes:
  • To allow precise circuit operation in places where the mains supply frequency is rated at 60Hz, the circuit must be modified as follows: disconnect the Cathode of D1 from pin #11 of IC1 and connect it to pin #9. Add a further 1N4148 diode, connecting its Anode to R1 and the Cathode to pin #6 of IC1: thats all!
  • The circuit will work fine with battery voltages in the 3 -12V range.
  • The visual display, formed by D4 and R3 is optional. Please note that R3 value shown in the Parts list is suited to low battery voltages. If 9V or higher voltages are used, change its value to 1K.
  • If a metronome-like click is needed, R2 and BZ1 must be omitted and substituted by the circuit shown enclosed in dashed lines, right-side of the diagram.
  • Stand-by current drawing is negligible, so SW1 can be omitted.
Readmore...

Friday, September 27, 2013

Switch Timer Circuit For Bathroom Light

This 9-minute timer switch can be used to control the light in a toilet or bathroom. The timer is started by pushing S1 and stopped by pushing S1 again. If you forget to turn it off, the controlled light will go off after nine minutes. If you need the light on continuously non-stop, you need to press S1 (turn on) and then S2 (cancellation of timer) within 9 minutes and in this case the light will be on until you switch it off with S1.
Circuit diagram:
switch-timer-circuit-diagram
IC1 is a is 4013 dual flip-flop. Flip flop IC1a is toggled on and off by switch S1 and it controls the relay which is switched by FET Q2. IC1a controls IC1b which is connected as an RS flipflop to enable or disable IC2, a 4060 oscillator/divider. This has its timing interval set by the components at its pins 9, 10 & 11. The relay should have 250VAC mains-rated contacts and these are connected in parallel with an existing wall switch.
Author: Rasim Kucalovic - Copyright: Silicon Chip Electronics
Readmore...

Monday, September 23, 2013

MOSQUITO REPELLENT ELECTRONIC CIRCUIT DIAGRAM

MOSQUITO REPELLENT ELECTRONIC CIRCUIT DIAGRAM

It uses IC CD4047 to control the buzzer timing utilizing resistor and capacitor. When the voltage passing through the transistor, the buzzer would sound.

    Variable resistor R1 : 10K ohm
    Polar capacitor C2 : 4.7 nF/16V
    Capacitor C3 : 22uF
    IC1 : CD4047
    NPN transistor Q1-Q2 BC547
    PNP transistor Q3-Q4 BC557
    Buzzer K1 : Tweeter 8 ohm
    Power supply : 12V
Readmore...

Sunday, September 22, 2013

USB Powered Audio Power Amplifier Circuit Diagram

This circuit of multimedia speakers for PCs has single-chip-based design, low-voltage power supply, compatibility with USB power, easy heat-sinking, low cost, high flexibility and wide temperature tolerance. At the heart of the circuit is IC TDA2822M. This IC is, in fact, mono-lithic type in 8-lead mini DIP package. It is intended for use as a dual audio power amplifier in battery-powered sound players. Specifications of TDA2822M are low quiescent current, low crossover distortion, supply voltage down to 1.8 volts and minimum output power of around 450 mW/channel with 4-ohm loudspeaker at 5V DC supply input.

An ideal power amplifier can be simply defined as a circuit that can deliver audio power into external loads without generating significant signal distortion and without consuming excessive quiescent current. This circuit is powered by 5V DC supply available from the USB port of the PC. When power switch S1 is flipped to ‘on’ position, 5V power supply is extended to the circuit and power-indicator red LED1 lights up instantly. Resistor R1 is a current surge limiter and capacitors C1 and C4 act as buffers. Working of the circuit is simple. Audio signals from the PC audio socket/headphone socket are fed to the amplifier circuit through components R2 and C2 (left channel), and R3 and C3 (right channel).

Circuit diagram:

USB Powered Audio Power Amplifier Circuit Diagram

USB Powered Audio Power Amplifier Circuit Diagram

Potmeter VR1 works as the volume controller for left (L) channel and potmeter VR2 works for right (R) channel. Pin 7 of TDA2822M receives the left-channel sound signals and pin 6 receives the right-channel signals through VR1 and VR2, respectively. Ampl i f ied signals for driving the left and right loudspeakers are available at pins 1 and 3 of IC1, respectively. Components R5 and C8, and R6 and C10 form the traditional zobel network. Assemble the circuit on a medium-size, general-purpose PCB and enclose in a suitable cabinet. It is advisable to use a socket for IC TDA2822M. The external connections should be made using suitably screened wires for better result.

Author: T.K. Hareendran - Copyright: EFY Mag

Readmore...

Wednesday, September 11, 2013

Build a Auto Anti Hijack Alarm Circuit Diagram

This Auto Anti-Hijack Alarm Circuit Diagram was designed primarily for the situation where a hijacker forces the driver from the vehicle. If a door is opened while the ignition is switched on - the circuit will trip. After a few minutes delay - when the thief is at a safe distance - the Siren will sound.

Auto Anti-Hijack Alarm Circuit Diagram

Where it differs from the first two alarms - is in what happens next. Im obliged to Victor Montanez from the USA who suggested that the engine cut-out should not operate - until the vehicle comes to a stop. That way - the engine will not fail suddenly or unexpectedly. And the hijacker will retain control.

I havent been able to implement Victors excellent suggestion completely - because I couldnt think of a simple, reliable and universally applicable way of sensing when the vehicle has come to a stop.

Instead - I have postponed engine failure until the ignition is switched off. Once the thief turns off the ignition - the engine will not re-start. Clearly - there is no certainty as to when this will occur. But I think it will occur sooner rather than later. Because theres a strong possibility that the hijacker will turn off the ignition - in an attempt to silence the siren. 

 Auto Anti-Hijack Alarm Circuit Diagram

Auto Anti-Hijack Alarm Circuit Diagram


As well as acting as a Hijack Alarm - this circuit offers some added protection. Like the Enhanced Hijack Alarm - it incorporates Jeff Chias suggestion. That is - every time the ignition is switched on - the alarm will trip. So it will protect the vehicle whenever you leave it unattended with the ignition switched off - even overnight in your driveway.

Importance
Before fitting this or any other engine cut-out to your vehicle - carefully consider both the safety implications of its possible failure - and the legal consequences of installing a device that could cause an accident. If you decide to proceed - you will need to use the highest standards of materials and workmanship.

Notes
Youre going to trip this alarm unintentionally. When you do - the LED will light and the Buzzer will give a short beep. The length of the beep is determined by C4. Its purpose is to alert you to the need to push the reset button. When you push the button - the LED will switch-off. Its purpose is to reassure you that the alarm has in fact reset. 

If the reset button is not pressed then - about 3 minutes later - both the Siren and the Buzzer will sound continuously. The length of the delay is set by R8 & C5. For extra effect - fit a second siren inside the vehicle. With enough noise going on - you may feel that its unnecessary to fit the engine cut-out. In which case - you can leave out C7, D8, R12, R13, Ty1 & Ry2.

When the ignition is switched on - C3 & R4 are responsible for tripping the alarm. By taking pin 1 low momentarily - they simulate the opening of a door. If you dont want the alarm to trip every time you turn on the ignition - simply leave out C3 & R4. 

Because the voltage on C3 may be reversed - the capacitor needs to be non-polarized. But connecting two regular 22uF capacitors back to back as shown - will work just as well. Because non-polarized capacitors are not widely available - the prototype was built using two polarized capacitors.

To reset the circuit you must - EITHER turn off the ignition - OR close all of the doors - before you press the reset button. While BOTH the ignition is on - AND a door remains open - the circuit will NOT reset.

The reset button carries virtually no current - so any small normally-open switch will do. Eric Vandel from Canada suggests using a reed-switch hidden behind (say) the dash - and operated by a magnet. I think this is an excellent idea. As Eric said in his email: - "... that should keep any thief guessing for a while."

Veroboard Layout

Veroboard Layout
 
How you prevent the engine from starting is up to you. It should happen when Ry2 de-energizes. The contacts of Ry2 are too small to do the job themselves. So use them to switch the coil of a larger relay. Remember that the relay must be suitable for the current its required to carry. Choose one specifically designed for automobiles - it will be protected against the elements - and will give the best long-term reliability. You dont want it to let you down on a cold wet night - or worse still - in fast moving traffic!!! Remember also that you must fit a 1N4001 diode across YOUR relays coil - to prevent damage to the Cmos IC
YOUR relay should drop-out when Ry2 de-energizes. Wire YOUR relay so that when it drops-out the engine will not start. Because turning-off the ignition will cause both Ry2 and YOUR relay to de-energize - the standby current will be low - and the engine will be disabled while the vehicle is parked.
The circuit board must be protected from the elements. Dampness or condensation will cause malfunction. Fit a 1-amp in-line fuse AS CLOSE AS POSSIBLE to your power source. This is VERY IMPORTANT. The fuse is there to protect the wiring - not the components on the circuit board. Please note that I am UNABLE to help any further with either the choice of a suitable relay - or with advice on installation.
Both the Siren and the Buzzer will go on sounding until the alarm is reset. The circuit is designed to use an electronic Siren drawing up to about 500mA. Its not usually a good idea to use the vehicles own Horn because it can be easily located and disconnected. However, if you choose to use the Horn, remember that Ry1 is too small to carry the necessary current. Connect the coil of a suitably rated relay to the "Siren" output. This can then be used to sound the Horn.


Readmore...